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We consider Bernoulli bond percolation on infinite graphs and we identify a
class of graphs for which the critical percolation probability is strictly less than 1.
The graphs in this class have to fulfill conditions stated in terms of a minimal

cut set property and a logarithmic isoperimetric inequality. For the particular
case of planar graphs the condition on minimal cut sets can be be replaced by
the assumption that the dual of the graph is bounded degree.
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1. INTRODUCTION

Percolation on the hypercubic d-dimensional lattice Zd is a widely inves-
tigated subject and its connection with statistical mechanics has been
exploited since a long time. However, only in recent years there has been an
increasing interest about percolative processes on general graphs. Rigorous
results about percolative processes beyond Zd were first obtained in the
early nineties on regular tree or tree-like graphs. (10, 17, 19) In 1996 Benjamini
and Schramm (5) proposed a comprehensive study of percolation on general
graphs, with special focus on Cayley graphs, quasi-transitive graphs and



planar graphs. In this work the authors proposed several conjectures, and
in particular they raised the question to establish the class of graphs which
exhibit a non trivial critical percolation probabilility pc. They proved in
particular that pc < 1 for graphs with positive Cheeger constant (trees are
in this class of graphs) and they conjectured that pc < 1 for a quite large
class of quasi-transitive graphs, i.e., Cayley graphs of finitely generated
infinite groups which are not a finite extension of Z (most of the regular
lattices fall in this class). This seminal work has been followed by several
papers. In particular, the conjecture above about Cayley graphs has been
shown to be true in the papers. (2, 18, 21) The study of percolation on quasi-
transitive graphs has also been further deepened in refs. 3, 4, and 14.
Moreover, the investigation of percolation process (and other probabilistic
and/or statistical mechanics processes) on tree-like graphs and, in general,
on non-amenable graphs (e.g., graphs with non-zero Cheeger constant) has
been continued in several works, see, e.g., refs. 7, 13, 15, 16, 20, 25, and 26.

On the other hand, the question related to the geometric/topological
structure that a general graph must possess in order to exhibit a non trivial
threshold for bond percolation probability gained importance due to
ref. 12, which showed that pc(G) < 1 is equivalent to the existence of a
phase transition for several other statistical-physics models on G. E.g., if G
is a bounded degree graph then pc < 1 also implies that the Ising model on
G exhibits a phase transition. Similar results were also given in refs. 8, 23,
and 24.

In the present paper we make some improvement in this direction, by
establishing a previously unknown class of infinite graphs with a non trivial
bond percolation threshold. Graphs G in this class have to be bounded
degree and to fullfill the following properties:

(i) An isoperimetric inequality, stating that the edge boundary of
any connected set in G, rooted in a fixed vertex, has to increase at least as
the logarithm of the diameter of the set.

(ii) A minimal cut set property, stating that the cut sets of G are
r-connected for some constant r.

In the special case of planar graphs the assumption that the graph is
bounded degree can be relaxed and it is enough to assume the graph just
locally finite. Moreover for planar graphs (ii) can be replaced by the
assumption that the dual of the graph is bounded degree, i.e., that the faces
of the graph have a number of edges uniformly bounded.

As we shall see in Section 5, within this class of planar graphs we
identify a class G which includes all the 1-skeletons of the normal tilings of
the plane.
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2. DEFINITIONS AND NOTATIONS

Let V be a finite or countable set, then |V| is denoting the cardinality
of V. We denote by P2(V) the set of all subsets U … V such that |U|=2.
A graph is a pair G=(V, E) with V being a countable set, and E … P2(V).
The elements of V are called vertices of G and the elements of E are called
edges of G. A graph G=(V, E) is finite if |V| < ., and infinite otherwise.
Let G=(V, E) and GŒ=(VŒ, EŒ) be two graphs. Then G 2 GŒ=(V 2 VŒ,
E 2 EŒ). If VŒ ı V and EŒ ı E, then GŒ is a subgraph of G, written as
GŒ ı G.

Two vertices x and y of G are adjacent if {x, y} is an edge of G. The
degree dx of a vertex x ¥ V in G is the number of vertices y adjacent to x.
A graph G=(V, E) is locally finite if dx < +. for all x ¥ V, and it is bounded
degree, with maximum degree D, if maxx ¥ V{dx} [ D < .. A graph G=(V, E)
is connected if for any pair B, C of subsets of V such that B 2 C=V and
B 5 C=”, there is an edge e ¥ E such that e 5 B ] ” and e 5 C ] ”.
Unless otherwise stated, the graphs considered hereafter are connected.

A path in a graph G is a sub-graph y=(Vy, Ey) of G such that

Vy={x1, x2,..., xn} Ey={{x1, x2}, {x2, x3},..., {xn − 1, xn}}

where all xi are distinct. The vertices x1 and xn are called end-vertices of
the path, while the vertices x2,..., xn − 1 are called the inner vertices of y and
we say that y connects (or links) x1 to xn, (as well as y is a path from x1

to xn). The length |y| of a path y=(Vy, Ey) is the number of its edges, i.e.,
|y|=|Ey |.

Given a graph G=(V, E) and two distinct vertices x, y ¥ V, we denote
by Pxy

G the set of all paths in G connecting x to y. The distance dG(x, y) in
G between x and y is the number dG(x, y)=min{|y|: y ¥ Pxy

G }. Note that
dG(x, y)=1 if and only if {x, y} ¥ E. Given two edges e and eŒ of G, we
define dG(e, eŒ)=min{dG(x, y): x ¥ e, y ¥ eŒ}. If S, R … V then dG(S, R)=
min{dG(x, y): x ¥ S, y ¥ R}. If F, H … E then dG(F, H)=min{dG(e, eŒ):
e ¥ F, eŒ ¥ H}.

Let G=(V, E) be an infinite graph. A ray r=(Vr, Er) in G is an infi-
nite sub-graph of G such that

Vr={x1, x2,..., xn,...} Er={{x1, x2}, {x2, x3},..., {xn − 1, xn},...}

where all xi are distinct. The vertex x1 is called the starting vertex of the ray
and we say that r starts at x1. We denote by Rx

G the set of all rays in G
starting at x. A geodesic ray in G is a ray r such that, if Vr=
{x0, x1, x2,..., xn,...}, then dG(x0, xn)=n for all n ¥ N.
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Let r and rŒ be two geodesic rays starting at x with vertex sets Vr=
{x=x0, x1, x2,..., xn,...} and VrŒ={x=y0, y1, y2,..., yn,...} respectively. If
Vr and VrŒ are such that dG(xn, ym)=n+m for any {n, m} ¥ N, then the
union d=r 2 rŒ is called a a geodesic diameter (or bi-infinite geodesic) in G.

Given G=(V, E) connected and R … V, let E|R={{x, y} ¥ E : x ¥ R,
y ¥ R} and define the graph G|R=(R, E|R). Note that G|R is a sub-graph
of G. We call G|R the restriction of G to R. We say that R … V is connected
if G|R is connected. For any non empty R … V, we further denote by “eR
the (edges) boundary of R defined by

“eR={e ¥ E : |e 5 R|=1} (2.1)

If R … V we denote

diam(R)= sup
{x, y} … R

dG(x, y)

If x ¥ V we denote B(x, r0) the ball of radius r0 and center at x, namely
B(x, r0)={y ¥ V : dG(x, y) [ r0}.

A graph is planar if it can be drawn in a plane without edges crossing.
It is possible for a planar graph G=(V, E) to define the dual graph

Gg=(Vg, Eg) in the following way: let a face of a planar graph be each
simply connected region of the plane delimited by the edges of G. Now take
as set of the vertices Vg of Gg the set of the faces of G; two faces in Vg

forms an edge eg ¥ Eg if they have an edge e ¥ E in common. With this
definitions, each edge eg ¥ Eg cuts exactly one edges e ¥ E and viceversa,
i.e., there is a one-to-one correspondence between edges in E and edges
in Eg. Given c … E we denote by cg … Eg the unique set in Eg associated
to c by such one-to-one correspondence. Note also that the possibility
eg={z, z} with z ¥ Vg is not excluded; it occurs whenever e={x, y} with
dx=1.

3. CUT SETS, MINIMAL CUT SETS, AND PEIERLS CONTOURS ON

INFINITE GRAPHS

In order to apply a Peierls type argument for percolation on general
graphs we need to introduce the concept of cut sets and minimal cut sets of
a graph. Such cut sets may be regarded as the generalization of the concept
of Peierls contours used in the d-dimensional Ising model.

Hereafter G=(V, E) will denote a locally finite infinite connected
graph.

1116 Procacci and Scoppola



A set c … E is called a cut set if the graph Gc=(V, E − c) is discon-
nected. A cut set c … E is called a minimal cut set if for all e ¥ c the set c − e
is not a cut set. A finite minimal cut set c … E in G have the following
property.

Proposition 1. Let c be a finite minimal cut set in G=(V, E), then
it may occur only one of the following two possibilities:

(i) Gc has no finite connected components,
(ii) Gc has one and only one finite connected component Ac=

(Ic, Ec) with Ec=E|Ic
) and c=“eIc.

Proof. Let us denote by Gext
c =(Vext

c , Eext
c ) the union of all infinite

components of Gc. Let now G int
c be the graph with vertex set Ic=V − Vext

c

and with edge set Ec=E − (c 2 Eext
c ). If Ic=” (and consequently Ec=”)

then Gc has no finite connected components and we are in the case (i).
Assume that Ic ] ”. In this case G int

c must be connected since by definition
of minimal cut set, for any edge e ¥ c, the graph (Vext

c 2 Ic, Eext
c 2 Ec 2 e)

=(V, E − (c − e)) is connected and this would not be possible if G int
c is done

by more than one connected components. Finally, the identity Ec=E|Ic

follows immediately from the fact that Ec 2 Eext
c 2 c=E. L

If case (ii) occurs we say that c is a Peierls contour. In this case the set
Ic … V is called the interior of c and the graph Ac, uniquely determined by c,
is called the animal associated to the Peierls contour c. We say that a Peierls
contour c surrounds x ¥ V if x ¥ Ic. Peierls contours in G have the following
property.

Proposition 2. Let c be a Peierls contour in G surrounding x, then
for any ray r=(Vr, Er) in G starting at x we have that Er 5 c ] ”.

Proof. Suppose by absurd that Er 5 c=”. Then Er … E1
r 2 E2

r with
E1

r … Ec and E2
r … Ẽext

c where G̃ext
c =(Ṽext

c , Ẽext
c ) is some (infinite) connected

component of Gext
c . The case E2

r=” would imply that Er … Ec which is
impossible since Er is infinite and Ec is finite. The case E1

r=” is impos-
sible since no edge in Eext

c has x as one of its end-points. Finally the last
case E1

r ] ” and E2
r ] ” is impossible since otherwise Ac 2 G̃ext

c would be
connected which contradicts Proposition 1. L

We denote by CG the set of all Peierls contours in G and by Cx
G the set

of Peierls contours in G surrounding x. There is clearly a one-to-one cor-
respondence between Peierls contours and connected finite sets in G.
Namely, if GG denotes the set of all connected and finite subsets of V, then
Proposition 1 implies immediately that the map c W Ic is bijection from CG
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into GG. As a matter of fact, if R … V is connected and finite, then “eR is a
Peierls contour with interior R.

4. BERNOULLI PERCOLATION ON G AND THE PEIERLS

ARGUMENT

A percolation process on G is defined as follows. Suppose that each
edge in G can have two possible states. Namely an edge e ¥ E can be either
open or closed. A configuration of the system is a function w: E Q {0, 1}
assigning to each edge e ¥ E either the value 1 (open edge) or 0 (closed
edge). Let W be the set of all configurations of the system.

In the Bernoulli bond percolation, the edges of G are open with inde-
pendent probability p and closed with independent probability 1 − p. The
product measure of the configurations of edges is denoted by Pp.

Let C(x) be the open cluster of the vertex x, namely C(x) is the con-
nected set of open edges (possibly empty) containing x. Then define

hx(p)=Pp{C(x) is infinite} (4.1)

and the critical probability of percolation on G as

pc=sup{p: hx(p)=0} (4.2)

We recall that by FKG inequality pc is independent of the choice of the
vertex x (see, e.g., Theorem 2.8 in ref. 9).

Let c ¥ CG be a Peierls contour, we denote by Sc the subset of V
defined as Sc={x ¥ V : x ¥ e for some e ¥ c} and call it the support of c.

Let W … E, and define L(W)=supW1 2 W2=W dG(W1, W2). A set W ¥ E is
r-close if L(W) [ r.

A graph G has the minimal cut set property if it exists r0 < . such that
any minimal cut set c is r0-close.

When G is planar, if c ¥ CG is a Peierls contour then its dual cg … Eg is
a simple cycle in Gg, i.e., a path in Gg that starts in a vertex of Vg and ends
in the same vertex and doesn’t repeat a vertex except for the first and last.

It is now easy to state the Peierls argument for our percolation process
on G. Consider

1 − hx(p)=Pp{|C(x)| < .}

Now observe that for any configuration w such that |C(x)| < . it exists at
least a Peierls contour c of closed edges surrounding x. The probability of
such Peierls contour c is simply (1 − p) |c|. Hence

1 − hx(p) [ C
c ¥ C

x
G

(1 − p) |c|= C
n \ 1

(1 − p)n C
c ¥ C

x
G

|c|=n

1 (4.3)
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Therefore in order to prove that pc < 1 one has simply to show that it exists
a constant K such that, for all n ¥ N

C
c ¥ C

x
G

|c|=n

1 [ Kn (4.4)

It is important to remark that the techniques developed in refs. 7 and
22 could be used also to further prove (easily) that the function hx0

(p) is
actually analytic in the neighborhood of p=1 and so are the finite connec-
tivity functions.

5. RESULTS

We will prove in this section three theorems. The first one is an easy
consequence of the results in Section 4 of ref. 2 and identify a class of
bounded degree graphs for which pc < 1. Note that for our purposes the
conditions listed in Proposition 8 in ref. 2 may be slightly weakened. The
second theorem identifies a different class of bounded degree graphs for
which pc < 1; in particular the request of existence of a bi-infinite geodesic
is replaced by a very weak isoperimetric inequality condition.

In the third theorem we show that for planar graphs again pc < 1 for a
very large class of graphs, including graphs locally finited but not bounded
degree.

Theorem 1. Let G=(V, E) be bounded degree, with maximum
degree D, such that:

(i) G has the minimal cut set property.

(ii) There exists a bi-infinite geodesic in G.

Then the critical probability pc on G, defined in (4.2), is strictly less
than 1.

Proof. Take x on the bi-infinite geodesic. We want to bound

C
c ¥ C

x
G

|c|=n

1 (5.1)

First note that, by (i), there exists r0 such that every Peierls contour c ¥ CG

is r0-close. Therefore, a Peierls contour c with cardinality n has every pair
of edges at most r0n far apart.
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Consider now the geodesic diameter d=r 2 rŒ in G from x, then, by
Proposition 2, Er 5 c ] ” and ErŒ 5 c ] ”. Let ex(c) (let e −

x(c)) be the first
edge, in the natural ray order, of Er (of ErŒ) which belongs to c and define

dn(x)={e ¥ Er : ,c ¥ Cx
G such that |c|=n and e=ex(c)}

Thus

C
c ¥ C

x
G

|c|=n

1= C
e ¥ dn(x)

C
c ¥ C

x
G : |c|=n

ex(c)=e

1 [ |dn(x)| sup
e ¥ E

C
c ¥ CG |c|=n

e ¥ c

1

Now, since r 2 rŒ is bi-infinite geodesic, |dn(x)| [ maxc d G(ex(c), e −

x(c)).
Since {ex(c), e −

x(c)} … c and c is r0 close, this means that dG(ex(c), e −

x(c)
[ r0n and we obtain the bound

|dn(x)| [ r0n

To bound the number of Peierls contour of cardinality n containing a fixed
edge e, we proceed as follows. Let now Gr0

be the graph with vertex set V
and edge set Er0

={{x, y}: dG(x, y) [ r0}. Gr0
is a connected bounded

degree graph with maximum degree Dr0
=maxx ¥ V |B(x, r0)| [ D r0+1. Con-

sider now the support Sc of c. Since c is r0-close, then the restriction Sc |Gr0
is connected in Gr0

. Moreover 1 [ |Sc | [ 2n. Therefore

sup
e ¥ E

C
c ¥ CG |c|=n

e ¥ c

1 [ sup
x ¥ V

C
2n

k=1
C

W … V : |W|=k
W|Gr0

connected, x ¥ W

[ C
2n

k=1
D2k

r0
,

i.e., finally

C
c ¥ C

x
G : |c|=n

1 [ 2rn C
2n

k=1
D2k

r0
[ 2rn C

2n

k=1
[D r0+1]2k [ Cn

for some constant C depending only on D and r0. L

Theorem 2. Let G=(V, E) be bounded degree, with maximum
degree D, such that:

(i) G has the minimal cut set property
(ii) It is possible to find a uniform constant C and a vertex x0 ¥ V

such that, for all finite connected W … V with x0 ¥ W, the inequality

|“eW| \
1
C

ln diam(W) (5.2)

is verified.
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Then the critical probability pc on G, defined in (4.2), is strictly less
than 1.

Proof. To bound the factor (5.1) we now proceed as follows. Since G
is connected and locally finite, for any x ¥ V hence in particular for x0,
there exists a geodesic ray r starting at x0. Then, since c ¥ Cx0

G , we have, by
Proposition 2, that Er 5 c ] ”. Let ex0

(c) be the first edge (in the natural
order of the ray) in Er which belongs to c and define

rn(x0)={e ¥ Er : ,c ¥ Cx0
G such that |c|=n and e=ex0

(c)} (5.3)

Hence

C
c ¥ C

x0
G

|c|=n

1= C
e ¥ rn(x0)

C
c ¥ C

x0
G x : |c|=n

ex(c)=e

1 [ |rn(x)| sup
e ¥ E

C
c ¥ CG |c|=n

e ¥ c

1

Now observe that

|rn(x)| [ sup
c ¥ C

x0
G

: |c|=n
diam(Ic)+1

and by hypothesis (ii) of the theorem, i.e., inequality (5.2) we get

|rn(x)| [ Cn+1

The factor supe ¥ E ; c ¥ CG |c|=n
e ¥ c

1 can now be bounded exactly as in

Theorem 1. L

Theorem 3. Let G=(V, E) be a planar locally finite connected
infinite graph with the following properties

(i) Its dual graph Gg is bounded degree with maximum degree Dg.

(ii) It is possible to find a uniform constant C and a vertex x0 ¥ V
such that, for all finite connected W … V with x0 ¥ W, the inequality

|“eW| \
1
C

ln diam(W) (5.4)

is verified.

Then the critical probability pc on G, defined in (4.2), is strictly less
than 1.
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Proof. Proceeding as in Theorem 2, consider the geodesic ray r from
x0. Then, since c ¥ Cx0

G , we have that Er 5 c ] ”. Let ex0
(c) be the first

edge (in the natural order of the ray) in Er which belongs to c and define
the edge set rn(x0) as in (5.3).

Then

C
c ¥ c ¥ C

x0
G

|c|=n

1= C
e ¥ rn(x0)

C
c ¥ C

x0
G : |c|=n

ex0
(c)=e

1 [ |rn(x0)| sup
e ¥ E

C
c ¥ CG |c|=n

e ¥ c

1

where, as before,

|rn(x0)| [ Cn+1

We now use the one-to-one correspondence between Peierls contours of
cardinality n in G and simple cycles of length n in Gg, and we write

sup
e ¥ E

C
c ¥ CG |c|=n

e ¥ c

1= sup
eg

¥ E
g

C
c

g
¥ C

g
G |cg|=n

eg
¥ c

g

1 (5.5)

where Cg
G is the set of all simple cycles in Gg. Using now hypothesis (i) of

the theorem, it is now trivial to bound the l.h.s. of (5.5). We get

sup
eg

¥ E
g

C
c

g
¥ C

g
G |c|=n

eg
¥ c

g

1 [ [Dg]n (5.6)

Hence we have again proved that

C
c ¥ Cx0

: |c|=n
1 [ (Cn+1)[Dg]n [ Kn

for some constant K. L

6. REMARKS AND EXAMPLES

First we note that in general the hypothesis (ii) of Theorem 1, namely
the existence of the bi-geodesic, is quite a strong condition on the graph
and in many cases it is not easy to be verified. Theorem 2, on the other
side, replaces it with a very mild isoperimetric condition. Such condition
appears to be optimal. More specifically the growth of the boundary of a
connected set with the log of the diameter generalizes a result presented in
ref. 9 about percolation of infinite subsets of the (two-dimensional) square
lattice.
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Fig. 1. A sketch of the (infinite) regions delimiting the subset V … Z3 and the subset V0 … Z2.

As an example, let L3=(Z3, E3) be the usual three-dimensional cubic
lattice with vertex set Z3={x=(m1, m2, m3) : mi ¥ Z} and edge set Ed

formed by the nearest neighbor pairs of Z3. This is a bounded degree graph
which has the minimal cut set property. We also think to L3 as naturally
embedded in R3. Let now V be the subset of Z3 given by

V={v=(m1, m2, m3) ¥ Z3 : m1 \ 0, m2
2+m2

3 [ a ln(1+m1)

Namely V is the infinite set of vertices in Zd ‘‘inside’’ the region of R3

delimitated by the revolution surface of equation r2=a ln(1+x) where
r2=y2+z2, a is a positive constant and y \ 0 (see Fig. 1).

Consider now the graph G=L3|V which is the restriction of L3 to V.
This graph does not admit an infinite bi-geodesic and is not planar, so
Theorem 1 and Theorem 3 are not useful. But it is easy to see that G satis-
fies all hypothesis of Theorem 2 and therefore has a non trivial percolation
threshold.

Indeed, the graph G is bounded degree and has the minimal cut set
property. It is also immediate to check that G satisfies the isoperimetric
condition (4.2). The worst cases are clearly when we choose connected
subsets of V of the form

Wn={v=(m1, m2, m3) ¥ V : m1 [ n+1}

where n \ 1 in such way that |Wn | \ 2.
In this case we have that |“eWn | \ pa ln(1+n) and diam Wn [ 2(n+1).

Hence

|“eWn |
ln(diam Wn)

\
pa ln(1+n)

ln 2+ln(1+n)
\

pa

2
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It is interesting to notice that two-dimensional slices of G are not expected
to have a non trivial percolation threshold, i.e., Theorem 11.55 of ref. 9 is
not applicable. E.g., take the bi-dimensional (infinite) subgraph G|V0

of G
where

V0={v=(m1, m2, m3) ¥ Z3 : m1 \ 0, m3=0, 0 [ m2 [ `a ln(1+m1)}

The graph G|V0
can be viewed as a subgraph of Z2 of the type G(f ) of

Section 11.5 in ref. 9 where f(u) is the non negative function on [0, .)
given by f(u)=`a ln(1+u). We immediately see that this graph is not
‘‘fat enough’’ to to ensure non trivial percolation threshold by
Theorem 11.55 of ref. 9, since f(u)/ln u Q 0 as u Q .. So the graph G
could provide an example of sub-graph of Z3 which percolates while no bi-
dimensional subsets of this graph possibly percolates. We also remark that
this example can easily generalized to Zd and other d-dimensional lattice.

Concering now planar graphs by this Theorem 3 one can establish
weather a planar graph has or not a non trivial percolation threshold,
without using any particular symmetry property of the graph (e.g., transi-
tivity).

In particular, Theorem 3 can be proved easily to be true for the a class
of tilings of the plane, usually referred in the literature as the class of
normal tilings (see, e.g., ref. 11). A tiling T of the plane is a countable
family T={T1, T2,..., } of closed sets (called tiles) which cover the plane
without gaps or overlaps. A tiling T is normal if every tile T ¥ T is a topo-
logical disk and it is uniformly bounded, i.e., there exists two positive
numbers UT and uT such that T contains a disk of radius uT and it is con-
tained in a disk of radius UT. For normal tilings, the intersection of any
pair of tiles is empty or may consists of a set of isolated points or arcs. The
isolated points of a tiling are called vertices of the tiling and the arcs are
called edges of the tiling.

If VT denotes the set of all vertices of the tiling and ET the set of all
edges of the tiling, then the graph GT=(VT, ET) is called the 1-skeleton of
T. Note that GT is locally finite if T is normal.

Now, the following corollary is an easy consequence of Theorem 3.

Corollary 1. Let T be a normal tiling. Then the graph GT=(VT, ET)
has bond percolation threshold less than 1.

Proof. It is easy to see that if T is a normal tiling then GT is bounded
degree and Gg

T is also bounded degree. To prove that inequality (5.2) is
satisfied let us consider a set Tn … T formed by n=|Tn | pairwise connected
tiles of T (two tiles are pairwise connected if they have an edge in
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common). Denote now by Wn … VT the set of vertices in Tn and by Pn the
subset of the plane which is the union of the tiles in Tn. Without loss in
generality, we can suppose that Pn is a simply connected closed set of the
plane. Then the edge boundary “eWn of Wn is a Peierls contour of Gg

T. By
hypothesis the dual graph is bounded degree, i.e., a tile can have at most N
vertices, so that |Wn | [ Nn. Let now A(Pn) be the area of the set Pn and let
L(Pn) be the length of the boundary of Pn. By the assumption that the
tiling is normal, we have that A(Pn) \ n(pu2

T) and the boundary of Pn con-
tains at least L(Pn)/UT edges so that |“eWn | \ L(Pn)/UT. Moreover, since Pn

is some closed and simply connected set in the plane, then it is possible to
find a constant C such that L(Pn) \ C[A(Pn)]1/2. Therefore we get

|“Wn | \ L(Pn)/UT \
C
UT

[A(Pn)]1/2 \
C
UT

[n(pu2
T)]1/2 \ C `p

uT

UT

5|Wn |
N

61/2

Since now |Wn |1/2 \ ln[(diam(Wn)], the inequality (4.2) follows. L

It is interesting to observe that the class of tilings satisfying the Pro-
position 3 includes quasi-periodic tiling of the plane such as the Penrose
tiling of Fig. 2.

It is finally important to remark that, as a possible further develop-
ment of methods and ideas illustrated in this paper, one could try to
modify Theorem 3 by strengthening the condition (4.2) (which, as we have
tried to show, is a a very mild condition) and at the same time by trying to
relax the condition that the dual be bounded degree in order to treat

Fig. 2. The Penrose tiling.
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proximity random graphs (which in general have a dual not bounded
degree) like, e.g., the b-skeletons on point Poisson processes of the plane.
These random graphs includes the Gabriel graph and the relative neigh-
borhood graph which are important for many applications.
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